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Abstract

This paper proposes a mathematical model and formalism to study coded exposure
(flutter shutter) cameras. The model includes the Poisson photon (shot) noise as well as
any additive (readout) noise of finite variance. This is an improvement compared to our
previous work that only considered the Poisson noise. In addition, closed formulae for the
Mean Square Error and Signal to Noise Ratio of the coded exposure method are given.
These formulae take into account for the whole imaging chain, i.e., the Poisson photon
(shot) noise, any readout noise of finite variance as well as the deconvolution and are valid
for any exposure code. In addition, we give an explicit formula that gives an absolute upper
bound for the gain of any coded exposure cameras in function of the temporal sampling
of the exposure code. The gain is to be understood in terms of Mean Square Error (or
equivalently in terms of Signal to Noise Ratio), with respect to a snapshot.

Keywords: Coded exposure, computational photography, flutter shutter, motion blur, mean
square error (MSE), signal to noise ratio (SNR).

1 Introduction

Since the founding papers [2, 3, 4, 37, 38, 39] of Agrawal, Raskar et al. coded exposure
(flutter shutter) method has received at lot follow ups [1, 11, 12, 14, 16, 17, 18, 19, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 40, 42, 43, 46, 47, 48, 50, 51, 52, 53, 54]. In a nutshell, the authors
proposed to open and close the camera shutter, according to a sequence called “code”, during
the exposure time. By this clever exposure technique, the coded exposure method permits one
to arbitrarily increase the exposure time when photographing (flat) scenes moving at a constant
velocity. Note that with a coded exposure method only one picture is stored/transmitted. A
rich body of empirical results that suggest that the coded exposure method allows for a gain
in terms of Mean Square Error (MSE) or Signal to Noise Ratio (SNR) compared to a classic
camera, i.e., a snapshot. Therefore, the coded exposure method seems to be a magic tool that
should equip all cameras. However, to the best of our knowledge, little is known on the coded
exposure method from a rigorous mathematical point of view. Hence, it seems crucial for the
applications to build a theory able to shed some light on this coded exposure method. For
instance, to the best of our knowledge, little is know on the gain, in terms of MSE or SNR, of
this coded exposure method compared to a standard (snapshot) camera. This papers proposes
a mathematical model of photon acquisition by a light sensor. The model can cope with any
additive readout noise of finite variance in addition to the Poisson photon (shot) noise. The
model is compatible with the Shannon-Whittaker framework, assumes that the relative camera
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scene velocity is constant and known, that the sensor does not saturate, that the quantization
effects can be neglected, that the readout noise has finite variance and that the coded exposure
method allows for an invertible transformation among the class of band limited functions (this
means that the observed image can be deblurred using a filter). Note that with this model the
image has a structure: the image is assumed to be band limited.

To be thorough, a mathematical analysis of a camera requires to go rigorously from the
continuous observed scene to the discrete samples of the final restored image. This is needed to
mathematically analyze the whole image chain: from the photon emission to the final restored
image via the observed discrete samples measured by the camera. To the best of our knowledge,
the coded exposure method is very useful for moving scenes. Consequently, we need a formalism
capable of dealing with moving scenes. Since the observed scene moves continuously with respect
to the time we adopt a continuous point of view. This means that we shall model the observed
scene as a function s. Loosely speaking, spxq give the light intensity at a spatial position x.
(By opposition, a discrete formalism would model the observed scene as a vector of Rn but
requires a more restrictive assumption, see below.) We shall rely on the Shannon-Whittaker
framework (see, e.g, [15]) to perform the mathematical analysis of sampling-related questions.
This framework requires the structure of band limited (with a cut off frequency) signals or
images and will allow us to perform a rigorous mathematical analysis of the coded exposure
method. Recall that a discrete formalism would model the observed scene as a vector of Rn

and the convolution would use Toepliz matrices. Therefore, the scene would be assumed to be
periodic and also band limited for sampling purposes. Note that the continuous formalism that
we shall develop in this paper does not require to assume that the observed scene s is periodic.
(This is needed because, to the best of our knowledge, most natural scenes are not periodic.)
However, the adaptation of the formalism that we shall develop in this paper to periodic band
limited scene is straightforward if needed for some application.

Our first goal is to provide closed mathematical formulae that give the MSE and SNR of
images obtained by a coded exposure camera. Therefore, we shall start by carefully model the
photon acquisition by a light sensor then deduce a mathematical model of the coded exposure
method. The mathematical model of camera that we shall develop in this paper has not, to the
best of our knowledge, been developed in the existing literature on the coded exposure method.
Indeed, the model we shall develop in this paper is able to cope with the Poisson photon (shot)
noise in addition to any additive (sensor readout) noise of finite variance and does not require
to assume that the observed scene is periodic. For example, the model developed in [48] does
not consider any additive (sensor readout) noise. The formulae that give the MSE and SNR of
the final crisp image

1. Assumes the Shannon-Whittaker framework that i) requires band limited (with a fre-
quency cut off) images, and that ii) the pixel size is designed according to the Shannon-
Whittaker theory.

2. Assumes that the relative camera scene velocity is constant and known.

3. Assumes that the sensor does not saturate.

4. Assumes that there is no quantization.

5. Assumes that the additive (sensor readout) noise has zero mean and finite variance.

6. Assumes that the coded exposure allows for an invertible transformation among the class
of band limited functions. (This means that the observed image can be deblurred using a
filter.)
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7. Neglects the boundaries effects for the deconvolution. (This is in favor of the coded
exposure because the inverse filter of a coded exposure camera has larger support than
the inverse filter of a snapshot.)

To the best of our knowledge, a sensor readout (additive) noise has zero mean. However, with
our formalism, the adaptation to non zero mean additive (sensor readout) noise is straightfor-
ward if needed for some application.

This paper proposes a mathematical model of coded exposure cameras that includes any
zero mean additive (sensor readout) noise of finite variance in addition to the Poisson photon
(shot) noise. This model allows us to prove a theorem that gives closed formulae for the MSE
and SNR of coded exposure cameras (see theorem 3.8 page 23). To the best of our knowledge,
the formula that gives the SNR of the coded exposure method, cannot be found in the existing
literature on the coded exposure method. We also give an upper bound for the gain of the
coded exposure method, in terms of MSE and SNR (see corollary 4.2 page 31), with respect to
a snapshot in function of the temporal frequency sampling of the exposure code. To the best
of our knowledge, the result stated in corollary 4.2 cannot be found in the existing literature.
The bound is applicable, to the best of our knowledge, to every existing exposure code of the
literature.

The upper bound of corollary 4.2 page 31 is illustrated on figure 2 page 31. In addition,
table 1 page 33 provides numerical experiments illustrating these results.

The paper is organized as follows. Section 2 gives a mathematical model classic cameras.
This mathematical model is extended in section 3 to model coded exposure cameras. Section 4
gives an upper bound for the gain of the coded exposure method, in terms of MSE and SNR
with respect to a snapshot, in function of the temporal sampling of the code. The annexes A-
G contain several proofs of propositions that are used throughout this paper. A glossary of
notations is in annex H page 40. (In the sequel latin numerals refer to the glossary of notations
page 40.)

2 A mathematical model of classic cameras

The goal of this section is to provide a mathematical model of the photon acquisition by a
light sensor and the formalism that we shall use in the sequel.

As usual in the coded exposure literature [3, 4, 5, 12, 33, 34, 48, 54] and for the sake of
the clarity we shall formalize the coded exposure method using a one dimensional framework.
In other words, the sensor array and the observed image are assumed be one dimensional.
This one dimensional framework is no limitation. Indeed, as we have seen, we assume that
the image acquisition obeys the Shannon-Whittaker sampling theory. This means that the
frequency cut off is compatible with the image grid sampling. The extension to any two di-
mensional grid (and two dimensional images) is straightforward. The sketch of the proof is in
annex A page 33. Therefore, the one dimensional framework that we shall consider is no lim-
itation for the scope of this paper that proposes a mathematical analysis of coded exposure
cameras. A fortiori, the calculations of MSE and SNR that we shall propose in this paper re-
main valid for two dimensional images. In addition, we will assume that the motion blur kernel
is known, i.e., the relative camera-scene velocity vector and the exposure code (or function) are
known (this kernel is called “PSF motion” in, e.g., [2]).

We now turn to the mathematical model of photons acquisition by a light sensor.

3



2.1 A mathematical model of photons acquisition by a light sensor that
includes any additive (sensor readout) noise of finite variance in addition
to the Poisson photon (shot) noise

The goal of this subsection is to give a rigorous mathematical definition (see definition 2.1
page 8) of the samples produced by a pixel sensor that observes a moving scene. This definition
of the observed sample can cope with any additive zero mean (sensor readout) noise of finite
variance in addition to the standard Poisson photon (shot) noise. Note that the model developed
in [48] do not consider any additive (sensor readout) noise. Therefore, the results of [48] do not
include this more elaborated mathematical model. In particular, the advantages of the coded
exposure method in terms of MSE, with this more elaborated set up, are, to the best of our
knowledge, open questions. Note that, to the best of our knowledge, the optimization of a coded
exposure camera is an open question.

We consider a continuous formalism in order to ease the transition from steady scenes to
scenes moving at an arbitrary real velocity. Another advantage of this continuous formalism is
that it allows us to avoid the implicit periodic assumption of the observed scene needed if one
uses Toeplitz matrices to represent the convolutions. (This is needed because, to the best of
our knowledge, most natural scenes are not periodic.)

We now sketch the construction of our camera model. We first consider the photon emission,
then include the optical and sensor kernels, then include the effect of the exposure time and
of the motion to our model. The lasts two steps consists in adding the Poisson photon (shot)
noise and the additive (sensor readout) noise to our camera model. The camera model that we
shall consider in this paper is depicted in figure 1.

Figure 1: Schematic diagram of our camera model. The observed scene emits light and moves at
velocity v. The light undergoes the blur of the optical system and is measured by a pixel sensor.
The pixel sensor produces a Poisson random variable (shot noise) that is further corrupted by
an additive (sensor readout) noise of finite variance to produce the observed sample.

We assume that the observed scene emits photons at a deterministic rate s defined by

s : R ÝÑ p0,�8q
x ÞÝÑ spxq.

Here and in the sequel, the variable x represents the spatial position. (We will precise the
unit of x, i.e., the unit we shall use to measure distances when we introduce the pixel sensor.)
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Intuitively, s represents the ideal crisp image, i.e., the image that one would observed if there
were no noise whatsoever, no motion, with a perfect optical system (formally the point spread
function is a Dirac-mass) and the pixel sensor has an infinitesimal area. In a nutshell, spxq
would be the grey level of the image at position x in the idealistic case mentioned above. The
quantity spxq can also be seen as the intensity of light emission at x.

We now introduce the optical system in our model. The effect of the optical system is
described by its point spread function (PSF) denoted g, and we assume that g ¥ 0. Formally,
the effect of the point spread function is modeled by a convolution in space (see, e.g., [24,
equation 7.1 page 171] see also, e.g. [2, equation 1, section 2]). Therefore, in the noiseless case,
if there is no motion, the grey level of the acquired image at position x is, formally, described
by

pg � sqpxq (1)

where � denotes the convolution (see (x) for the definition). (Recall that here and in the rest
of the text, Latin numerals refer to the formulae in the final glossary page 40.) We will give the
assumptions on g and s so that the quantity in (1) is well defined later on.

A pixel sensor can be small but has nevertheless a positive area. Indeed, a pixel sensor
integrates the incoming light g � s (the scene is observed through the optical system) on some
surface element of the form rx1, x2s � R with x1   x2. Therefore, formally, the output of a
pixel sensor supported by rx1, x2s, in the noiseless case and without motion, is

» x2

x1

pg � sqpyqdy. (2)

In the sequel we shall assume that all the pixel sensors of the sensor array have the same length.
Mathematically, we can normalize this length so that the all the pixel sensors of the array have
unit length. This correspond to using the pixel sensor length as unit to measure distances.
Thus, this represents no limitation. Hence, from now on the unit of x is the pixel sensor length.
By definition, with this unit, all the pixel sensor have lengths 1. Therefore, from now on when
we speak of a pixel sensor centered at x we mean that the pixel sensor is supported on the
interval rx� 1

2
, x� 1

2
s.

Hence, from (2) we deduce that the output of a pixel sensor supported on the interval
rx � 1

2
, x � 1

2
s, that stares at the scene s through the optical system modeled by g, is, in the

noiseless case and without motion,

» x� 1

2

x� 1

2

pg � sqpyqdy � p1

r�

1

2
, 1
2
s

� g � s
looooooomooooooon

u

qpxq. (3)

Consider the deterministic function formally defined by u :� 1

r�

1

2
, 1
2
s

� g � s. The deterministic

quantity upxq represents the grey level of the image at position x if there were no noise and no
motion. Indeed, u contains the kernels of the optical system g and of the sensor. Note that the
quantity upxq can also be seen as an intensity of light emission received by a unit pixel sensor
centered at x. With the formalism of, e.g., [2, equation 1, section 2] 1

r�

1

2
, 1
2
s

represents “hsensor”

and g represents “hlens”.
We now introduce the exposure time in our model. Indeed, the sensor accumulates the light

during a time span of the form rt1, t2s � R, with t1   t2. We denote by ∆t the positive quantity
∆t :� t2 � t1 called exposure time. Thus, from (3), the output of a pixel sensor centered at x

that integrates on the time interval rt1, t2s is, in the noiseless case

» t2

t1

» x� 1

2

x� 1

2

pg � sqpyqdydt �

» t2

t1

upyqdt. (4)
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Note that the quantity in (4) is the amount of light measured by the pixel sensor, and it evolves
linearly with the exposure time ∆t p� t2 � t1q.

We now extend the above formalism to cope with moving scenes. Without loss of generality
(w.l.o.g.) we assume that the camera is steady while the scene s moves. The coded exposure
method permits to deal with uniform motions. Therefore, we assume that the scene s moves
at a constant velocity v P R (measured in pixel per second) during the exposure time interval
rt1, t2s. This means that the scene evolves with respect to the time as spx�vtq. Here and in the
sequel the temporal variable is denoted by t. Therefore, from (4) we deduce that the output of
a pixel pixel sensor centered at x and integrating on the time interval rt1, t2s is, in the noiseless
case,

» t2

t1

» x� 1

2

x� 1

2

pg � sqpy � vtqdydt �

» t2

t1

upx� vtqdt. (5)

For example, suppose that we take a constant velocity v � 1 in (5). In this case, the output of
a pixel sensor centered at x is, in the noiseless case,

» t2

t1

» x� 1

2

x� 1

2

pg � sqpy � tqdydt � p1

rt1,t2s � 1
r�

1

2
, 1
2
s

� g � sqpxq � p1

rt1,t2s � uqpxq,

where 1
ra,bs represents the characteristic function of the interval ra, bs. (See (3) for the last

equality.) From this simple example we can qualitatively describe where the exposure code will
act. Indeed, by a clever exposure technique, the coded exposure method will allow to replace
the function 1

rt1,t2s in the above formula by a more general class of functions that does not need
to be window functions. With the formalism of, e.g., [2, equation 1, section 2] 1

rt1,t2s represents
“hmotion”.

We now extend our model to cope with the Poisson photon (shot) noise and then will add
the readout noise. The photon emission follows a Poisson distribution see, e.g., [7]. (If X is a
random variable that follows a Poisson distribution then all the possible realization of X are in
N. In addition, the probability of the event X � k is PpX � kq � λke�λ

k!
, where λ ¡ 0 is the

intensity of the Poisson random variable.) A pixel sensor is a photon counter. Indeed, a pixel
sensor integrates the photons that are emitted by the moving observed scene s on some surface
element of the form rx1, x2s on the time span rt1, t2s and produces a sample. This sample follows
a Poisson random variable. From (5), this means that the sample produced by a pixel sensor
supported by rx1, x2s and that integrates on the time span rt1, t2s has law

P

�

» t2

t1

» x� 1

2

x� 1

2

pg � sqpy � vtqdydt

�

, (6)

where the notation Ppλq denotes a Poisson random variable of intensity λ. With (3) the above
equation can be rewritten as

P

�

» t2

t1

upx� vtq




. (7)

Thus, the value of this sample can be any realization of this Poisson random variable. Con-
sequently, the probability that the sample has value k P N when observing the scene s on the
time span rt1, t2s with the pixel sensor centered at x is

�

³t2
t1
upx� vtqdt

	k

exp
�

�

³t2
t1
upx� vtqdydt

	

k!
.

This quantity is nothing but the probability that the pixel sensor counts k photons during the
time interval rt1, t2s.
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Consider the case where v � 0, t1 � 0, t2 � ∆t in (7). If the observed value obspxq at

a position x P R follows P

�

³∆t

0
upxqdt

	

we have Epobspxqq � ∆tupxq. This means that, in

expectation, the number of photon caught by the pixel sensor centered at x increases linearly
with the exposure time. If we time normalize the obtained quantity and consider, formally,

a random variable uestpxq that follows
P
p

³

∆t

0
upxqdt

q

∆t
we obtain E puestpxqq � upxq. This means

that uestpxq estimates upxq without bias. In addition, we have var puestpxqq �
∆tupxq

∆t2
�

upxq

∆t
.

Consider the SNR on the space interval r�R,Rs given by
1

2R

³R
�R

Epuestpxqqdx
b

1

2R

³R
�R

varpuestpxqqdx
. This definition

of the SNR can be found in, e.g, [24, equation 1.39, p. 42], [5, equation 15, p. 4], [3, equation
1, p. 2562]. We have

1
2R

³R

�R
Epuestpxqqdx

b

1
2R

³R

�R
varpuestpxqqdx

�

1
2R

³R

�R
upxqdx

b

1
2R

³R

�R

upxq

∆t
dx

�

b

1
2R

³R

�R
upxqdx

∆t
.

Therefore, assuming that µ the “mean signal level” [24, p. 42] (µ relates to ī0 in, e.g., [3, section
2])

R

�

Q µ :� lim
RÑ�8

1

2R

» R

�R

upxqdx

is finite we can define the SNR by

SNRpuestq :�
limRÑ�8

1
2R

³R

�R
Epuestpxqqdx

b

limRÑ�8

1
2R

³R

�R
varpuestpxqqdx

.

Thus, we have SNRpuestq �
?

µ∆t. For example, if the mean photon emission µ doubles then the
SNR is multiplied by a factor

?

2. (And we retrieve the fundamental theorem of photography.)
Note that if we have no control over the photon emission then the only way to increase the SNR
is to increase the exposure time ∆t. Similarly, we define the MSE by

MSEpuestq :� lim
RÑ�8

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx,

whenever the limit exists, and we have MSEpuestq � µ∆t.
We are now in position to extend our model to include the additive (readout) noise. Here

and in the sequel the additive (readout) noise of a pixel sensor centered at x is modeled by a
zero mean real random variable of finite variance denoted by ηpxq. Therefore, from (6), the
output of the pixel sensor centered at x that integrates the photons on the time span rt1, t2s

can be, formally, any realization of the sum of the random variables

P

�

» t2

t1

» x� 1

2

x� 1

2

pg � sqpy � vtqdydt

�

� ηpxq, (8)

or equivalently (see (3)),

P

�

» t2

t1

upx� vtqdt




� ηpxq. (9)

Recall that the deterministic quantity upxq represents the grey level of the image at position
x if there were no noise and no motion as it is seen by a pixel sensor centered at x. Indeed,
recall that u contains the kernels of the optical system g and of the (normalized) pixel sensor.
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The quantity
³t2
t1
upx � vtqdt represents the amount of light received by a steady pixel sensor

centered at x that gathers the light emitted by the observed scene moving at velocity v on the
time interval rt1, t2s. Here and in the sequel, we call “observed sample” and denote obspxq the
sum of random variables formally defined in (9).

We now give a mathematical framework to make precise the above formulae. We assume that
the scene s P L1

locpRq so that the convolution in (3) page 5 is well defined. We will assume that
the PSF furnishes a cut off frequency. This assumption is needed by the Shannon-Whittaker
sampling theory. We will assume that the frequency cut off of g is π, i.e., g is r�π, πs band
limited. In other words, ĝpξq � 0 for any ξ P R such that |ξ| ¡ π, where, here and in the
sequel, we denote by ĝ or Fpgq the Fourier transform of g (see (xv) for the definition of the
Fourier transform) and (here and elsewhere) ξ P R represents the (Fourier) frequency coordinate.
The choice of r�π, πs in the following definition is thoroughly justified in annex B page 34.

Definition (The observable scene u.)
We call observable scene any non negative deterministic function u of the form u � 1

r�

1

2
, 1
2
s

�g�s.

Recall that the 1
r�

1

2
, 1
2
s

denotes the characteristic function of the interval r�1
2
, 1
2
s and is related

to the normalized pixel sensor, the PSF is g P SpRq and r�π, πs band limited and s P L1
locpRq

represents the (non negative) photon emission intensity. We have that u P L1
locpRq and assume

that u satisfies µ :� limTRÑ�8

1
2R

³R

�R
upxqdx P R�. In addition, we assume that ũ :� u � µ P

L1
pRq X L2

pRq.

Note that u is the sum of the constant µ and of ũ P L1
pRq. Thus, we have u P S1pRq (the

space of tempered distribution). This means that u enjoys a Fourier transform in S1pRq, see,
e.g., [6, p. 173], see also [45, p. 23]. In addition, u and ũ inherit the frequency cut off of the
PSF g. Therefore, u and ũ are r�π, πs band limited. In addition note that the assumption
ũ P L2

pRq is w.l.o.g. Indeed, since ũ P L1
pRq, from Riemann-Lebesgue theorem (see e.g., [23,

prop. 2.1]), we have that ˆ̃u is continuous. In addition, since ũ is r�π, πs is band limited we
have that ˆ̃u is continuous and has compact support. We deduce that ˆ̃u P L2

pRq. Therefore, we
obtain that ũ P L2

pRq w.l.o.g.
We can now give a definition of the observed sample at a pixel centered at x that we shall

denote obspxq.

Definition (Observed sample of a of pixel that includes any additive (sensor read-
out) noise of finite variance in addition to the Poisson photon (shot) noise.)
We assume that the observed sample produced by a unit pixel sensor centered at x P R is cor-
rupted by an additive noise ηpxq that we shall call readout noise. We assume that Epηpxqq � 0
and that varpηpxqq � σr   �8. We shall denote this observed sample by obspxq, (from (9)), we
have

obspxq � P

�

» t2

t1

upx� vtqdt




� ηpxq,

where rt1, t2s is the time exposure interval, the observable scene u is defined by definition 2.1
page 8 and moves at velocity v P R. The notation X � Y means that the random variables X
and Y have the same law.

In the sequel we will need to compute MSEs as well as SNRs. Therefore, we will need to
compute expected values and variances of the observed samples. Thus, we need to justify the
validity of these operations. This is done in annex C page 35.
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The definition 2.1 entails that obspxq, the observed sample of a pixel sensor centered at
position x, is a measurable function (a random variable see, e.g., [44, p. 168]) for which it is
mathematically possible to compute, e.g., the expectation and the variance.

The images produced by a digital camera are discrete. In addition, the image obtained by a
coded exposure camera requires to undergo a deconvolution to get the final crisp image. Note
that the Wiener filter (see, e.g., [22, p. 205], [9, p. 95], [55, p. 159] see also [10, p. 252] for
a definition) is not applicable in our case since the Poisson noise is not white additive. The
calculation of the adequate deconvolution filter requires a continuous model. Thus, we now turn
to the sampling and interpolation in order to go comfortably from the discrete observations to
the underlying continuous image.

2.2 Sampling and interpolation

This section recalls the principles of the Shannon-Whittaker interpolation that applies to,
e.g., images that have the band limitedness structure. Consider a r�π, πs band limited deter-
ministic function f P L1

pRq X L2
pRq. From the values f pnq for n P Z the Shannon-Whittaker

interpolation of f is
¸

nPZ

f pnqsincpx� nq (where sincpxq � sinpπxq

πx
)

and the above series converges uniformly to f pxq for any x P R (see, e.g., [15, p. 354]).

We recall that annex B page 34 proves that it is no loss to assume that u is r�π, πs band limited.
However, the sample obspxq defined in definition 2.1 page 8 produced by the sensor is noisy as
it contains the Poisson photon (shot) noise and the additive sensor readout noise. This means
that obs is not a deterministic function. The Shannon-Whittaker theorem is usually applied
to deterministic functions. Some generalization exists in the case where the observed samples
are corrupted by an additive noise, see, e.g., [26, p. 111], or to sample wide sense stationary
stochastic signals, see, e.g., [26, p. 148]. However, the Poisson photon shot noise is not additive.
Therefore, the first generalization is not applicable. In addition, from definition 2.1 page 8 we
deduce that the autocorrelation function E pobspxqobspyqq is not a function of the variable x�y.
This means that the samples of a coded exposure camera cannot be seen as the samples of a wide
sense stationary stochastic process (see, e.g., [9, p. 17] for the definition). Thus, to the best of
our knowledge, the existing generalizations of the Shannon-Whittaker theorem are not sufficient
to treat the observed samples of a coded exposure camera (defined in definition 2.1 page 8).
Consequently, in the sequel, we shall carefully prove that, in fact, the Shannon-Whittaker theo-
rem holds for the observed samples of a coded exposure camera. In other words, we shall prove
that

“obspxq �
¸

nPZ

obspnqsincpx� nq” (where sincpxq � sinpπxq

πx
.) (10)

is mathematically feasible for the obs defined in definition 2.1 page 8.
Therefore, in the sequel, we assume that the observed samples are obtained from a sensor

array and that the sensor array is designed according to the Shannon-Whittaker sampling
theory. Thus, we assume that the samples obspxq are obtained at a unit rate, i.e., for x P Z.
Consequently, we shall denote the observed samples by obspnq. This means that, in the sequel,
we shall neglect the boundaries effect due to the deconvolution. This is another way to get rid
of the boundaries effects without assuming that the observed scene is periodic as required by
linear algebra (with Toepliz matrices) model based (see, e.g., [2, 3, 4, 17, 38, 40, 47, 48]).
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(This is needed because, to the best of our knowledge, most natural scenes are not periodic.)
Note that this is in favor of the coded exposure method since the support of the exposure
function is larger than the support of the exposure function of a snapshot.

Hereinafter, we assume that the sequence of random variables pηpnqqnPZ are mutually in-
dependent, identically distributed and independent from the shot noise, i.e., independent from

P

�

³t2
t1
upn � vtqdt

	

where n P Z. This independence assumption represents no limitation for

the model. Indeed, a photon is not caught twice by the sensor array. In addition, the additive
(sensor readout) noise comes from an inaccurate reading of the sample value that does not
depends on the Poisson photon (shot) noise.

We have defined the observed samples produced by a light sensor in definition 2.1 page 8.
This definition includes both the Poisson photon (shot) noise and an additive (readout) noise of
finite variance. We now turn to the mathematical formalization of the coded exposure method.

3 A mathematical model of coded exposure camera that in-
cludes any additive (sensor readout) noise of finite variance

in addition to the Poisson photon (shot) noise

The goal of this section is to formalize the coded exposure method. In this section, we
consider invertible and deterministic “exposure codes” and provides the MSE and SNR of these
exposure strategies. The study yields to theorem 3.8 page 23.

The coded exposure (flutter shutter) method permits to modulate, with respect to the time,
the photons flux caught by the sensor array. Indeed, the Agrawal, Raskar et al. flutter shutter
method [2, 3, 4, 37, 38, 39] consists in opening/closing the camera shutter on sub-intervals of
the exposure time. In such a situation the exposure function that controls when the shutter
is open or closed is binary and piecewise constant. Since it is piecewise constant it is possible
to encode this function using an “exposure code”. (We give a mathematical definition of these
objects page 11.)

Note that neither the model nor the results of [48] can be used in this paper. Indeed, in [48]
the additive (sensor readout) noise is neglected. Therefore, the formalism of [48] does not hold
with the more elaborated set up that we shall consider here. Indeed, this paper considers any
additive sensor readout noise of finite variance in addition to the Poisson photon (shot) noise.

As we have seen, in their seminal work [2, 3, 4, 37, 38, 39], Agrawal, Raskar et al. propose
to use binary exposure codes. Yet, mathematically, we could envisage smoother exposure codes
that are not binary. Indeed, with a bigger searching space for the exposure code the MSE and
SNR can be expected to be better than with the smaller set of binary codes. Therefore, in
the sequel, we shall assume that the exposure codes have values in r0, 1s. The value 0 means
that the shutter is closed while the value 1 means the shutter is open and, e.g., 1

2
means that

half of the photons are allowed to reach the sensor. We do not consider the practical feasibility
of these non binary exposure codes as this is out of the scope of this paper which proposes a
mathematical framework and formulae.

We first formalize the fact that the exposure code method modulates temporally the flux of
photons that are allowed to reach the sensor by giving an adequate definition of a “exposure
function” that, hereinafter, we shall denote α. To be precise, the gain αptq at time t is defined
as the proportion of photons that are allowed to travel to the sensor. We then give the formula
of the observed samples taking the exposure function into account (see definition 3 page 11).
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Definition (Exposure function, exposure code.)
We call exposure function any function α of the form

α : R ÝÑ r0, 1s

t ÞÝÑ

°

�8

k��8 αk1
rk∆t,pk�1q∆tqptq.

We assume that ak P r0, 1s, for any k, that pakqk P ℓ1pZq and that ∆t ¡ 0. The sequence pakqk
is called exposure code.

Remark (α P L1
pRq X L2

pRq X L8

pRq)
The above definition can cope with finitely supported codes, e.g., the Agrawal Raskar et al.
code [38, p. 5] and patent application [39]. Since, ℓ1pZq � ℓ2pZq � ℓ8pZq, we deduce that for
any exposure code we have α P L1

pRq X L2
pRq X L8

pRq.

We have defined the exposure function that controls with respect to the time the camera
shutter. Recall that αptq is nothing but the percentage of photons allowed to reach the sensor at
time t. We are now in position to give the formula of the observed samples of a coded exposure
camera.

Let α be an exposure function and upx�vtq a scene moving at a velocity v P R. The exposure
function modulates with time the incoming photon flux. Therefore, from definition 2.1 page 8,
we deduce that obspnq, the observed sample at a position n P Z, is a random variable

obspnq � P

�

»

8

�8

αptqupn � vtqdt




� ηpnq � P

��

1

|v|
α
�

�

v

	

� u




pnq




� ηpnq.

Recall that the random variables obspnq are only obtained for n P Z.

Definition (Observed samples of a coded exposure camera.)
Let α be an exposure function. We call observed samples at position n of the scene u (defined
in definition 2.1 page 8) moving at velocity v P R the random variable

obspnq � P

��

1

|v|
α
�

�

v

	

� u




pnq




� ηpnq. (11)

Recall that the random variables obspnq n P Z are mutually independent (see page 10). From
definition 2.1 page 8 we have that u is of the form L1

pRq plus constant and is band limited.
From definition 3 page 11 we have that α P L1

pRq. We obtain that the convolution in (11) is
well defined everywhere. In addition, note that the pixels are read only once as in, e.g., [2, 3, 4,
37, 38, 39]. This means that with a coded exposure camera only one image is observed, stored
and transmitted.

Remark (The motion blur of a standard camera is not invertible as soon as its
support exceeds two pixels.)
A standard camera can be seen as a coded exposure camera if the exposure function α is of
the form α � 1

r0,∆ts, where ∆t ¡ 0 is the exposure time measured in second(s). Consider the
idealistic noiseless case where, from (11), one would observe

Epobspnqq �

�

1

|v|
1

r0,∆ts

�

�

v

	

� u




pnq. (12)
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From definition 2.1 page 8 u is r�π, πs band limited. Therefore, we deduce that the convolution
in (12) is non invertible as soon as the Fourier transform of 1

|v|
1

r0,∆ts

�

�

v

�

vanishes on r�π, πs.

For any ξ P R, we have F

�

1
|v|
1

r0,∆ts

�

�

v

�

	

pξq � F
�

1

r0,∆ts

�

pξvq. In addition, from the definition

of the Fourier transform (xv), for any ξ P R we have

F
�

1

r0,∆ts

�

pξq � ∆tsinc

�

ξ∆t

2π




e
�iξ∆t

2 . (13)

Therefore, for any ξ P R, we have

F

�

1

|v|
1

r0,∆ts

�

�

v

	




pξq � ∆tsinc

�

ξv∆t

2π




e
�iξv∆t

2 .

From the definition (xvii) of the sinc function, we deduce that the convolution in (12) is not
invertible as soon as the blur support |v|∆t ¥ 2. Since, the velocity v is measured in pixed per
second, and the exposure time ∆t is measured in second(s) we deduce that as soon as the blur
support |v|∆t exceeds two pixels the motion blur of a standard camera is not invertible.

The observed samples of any coded exposure camera are formalized in definition 3 page 11. We
wish to compute the MSE and SNR of a deconvolved crisp image with respect to the continuous
observable scene u defined in definition 2.1 page 8. The study yields to theorem 3.8 page 23.

To compute the MSE and SNR, a continuous deconvolved crisp signal uest must be defined
from the observed samples obspnq observed for n P Z. Thus, our work-plan is

Work-plan:

Step 1 Justify the mathematical feasibility of the Shannon-Whittaker interpolation “obspxq �
°

nPZ obspnqsincpx � nq” of the observed samples obspnq (see definition 3 page 11) of a
coded exposure camera. This is done in section 3.1. The study yields to proposition 3.4
page 16.

Step 2 Deduce the conditions on the exposure function α (see definition 3 page 11) for the
existence of an inverse filter γ that deconvolve the observed image and gives back a crisp
image. This is done in section 3.2. The study yields to proposition 3.7 page 19.

Step 3 Compute the MSE and SNR of this deconvolved crisp image with respect to the con-
tinuous observable scene u (see definition 2.1 page 8). This is treated in section 3.3. The
study yields to theorem 3.8 page 23.

In order to tackle the step 1 of our work plan, the following proposition and corollary will
be needed to compute the MSE and SNR of the coded exposure method.

Proposition 3.1. The observed samples of the coded exposure method are such that, for any
n P Z,

Epobspnqq �

�

1

|v|
α
�

�

v

	

� u




pnq and varpobspnqq �

�

1

|v|
α
�

�

v

	

� u




pnq � σ2
r . (14)

Proof. The proof is a direct consequence of definition 3 page 11.
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Lemma 3.2. The deterministic function R Q x ÞÑ

�

1
|v|
α
�

�

v

�

� u
	

pxq is r�π, πs band limited,

uniformly bounded and for any x P R we have

�

1

|v|
α

�

1

v




� u




pxq �

�

1

|v|
α
�

�

v

	

� ũ




pxq � µ

»

R

αptqdt. (15)

Proof. See annex D page 35.

Corollary 3.3. The deterministic function Z Q n ÞÑ varpobspnqq is uniformly bounded.

Proof. The proof is immediate from proposition 3.1 and lemma 3.2.

We now turn to the step 1 of our work-plan that proves the mathematical feasibility of
the Shannon-Whittaker interpolation, formally given in equation (10) page 9, of the sequence
obspnq where n P Z to a stochastic process obspxq where x P R.

3.1 Mathematical feasibility of the Shannon-Whittaker interpolated image
obspxq

This section tackles the step 1 of our work-plan. The study yields to proposition 3.4 page 16.
We give a rigorous mathematical proof of the mathematical feasibility of the Shannon-Whittaker
interpolation of the sample obspnq obtained for n P Z. In other words, we need to find a suitable
convergence, for any x P R, of the series formally defined by

obspxq �

8

¸

n��8

obspnqsincpx� nq. (16)

Recall that we wish to compute the MSE and SNR of the final crisp (deconvolved) image.
Therefore, we need closed formulae for the expectation and variance of (16). Thus, we need to
prove that the series (16) converges, for any x P R, in quadratic mean. We shall use a Cauchy
argument (see, e.g., [41, thm 6.6.2 p. 194]). We now give the construction details.

Consider the

˜obspnq :� obspnq � Epobspnqq, (17)

for n P Z. The proof is in three steps. The step a) proves that, for any x P R, the series

�8

¸

n��8

˜obspnqsincpx� nq

converges in quadratic mean. The step b) proves that, for any x P R, the series

�8

¸

n��8

Epobspnqqsincpx� nq

converges to a deterministic constant. These two steps entail that the series in (16) converges,
for any x P R, in quadratic mean. The step c) provides explicit formulae for the expectation
and variance of (16). Recall that these calculations will be needed for the computation of MSE
and SNR of the deconvolved crisp image. We now turn to the proof of step a).
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Step a): From (17), for any n P Z we have

Ep

˜obspnqq � 0; varp ˜obspnqq � Ep

˜obspnq2q � varpobspnqq. (18)

Consider the finite sums of independent random variables

õN pxq :�
Ņ

�N

˜obspnqsincpx� nq. (19)

Note that hereinafter, õN denotes the N -th term of the sequence defined in (19). For any
N ¥M and any x P R we have that

E

�

�

�õN pxq � õM pxq
�

�

2
	

�

¸

M |n|¤N

E

�

�

˜obspnq
	2



sinc2px� nq. (20)

Therefore, combining (18) and (20) we deduce that

E

�

�

�õN pxq � õM pxq
�

�

2
	

�

¸

M |n|¤N

varpobspnqqsinc2px� nq, (21)

for any x P R. From corollary 3.3 page 13 we have that supn varpobspnqq   �8. Hence,
from (21) we have

E

�

�

�õN pxq � õM pxq
�

�

2
	

¤

�

sup
n

varpobspnqq




¸

M |n|¤N

sinc2px� nq, (22)

for any x P R. The series
°

�8

n��8 sinc2px�nq converges for any x P R. Consequently, from (22),
for any x P R and ǫ ¡ 0 we deduce that there exists M0 P N such that if M0 ¤M ¤ N we have

E

�

�

�õN pxq � õM pxq
�

�

2
	

  ǫ. (23)

Therefore, from the Cauchy criterion (see, e.g., [41, thm 6.6.2 p. 194]) we deduce that, for any
x P R, the series

˜obspxq �
�8

¸

n��8

˜obspnqsincpx� nq

converges in quadratic mean to a limit that we can therefore call ˜obspxq. This concludes step a).
We now turn to step b) that proves that, for any x P R, the series

°

�8

n��8 Epobspnqqsincpx� nq

converges to a deterministic constant. Recall that is needed to conclude that (16) page 13
converges in quadratic mean.

Step b): From proposition 3.1 page 12, for any x P R, we have

Ņ

n��N

Epobspnqqsincpx� nq �

Ņ

n��N

�

1

|v|
α
�

�

v

	

� u




pnqsincpx� nq. (24)

Combining (15) page 13 and (24), we have, for any x P R,

Ņ

n��N

Epobspnqqsincpx� nq �

Ņ

n��N

�

1

|v|
α
�

�

v

	

� ũ




pnqsincpx� nq � µ

�

»

R

αptqdt

� Ņ

n��N

sincpx� nq.

(25)
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We first take care of the first term on the right hand side (RHS) of (25). From definition 2.1
page 8 we have ũ P L1

pRq and ũ is r�π, πs band limited. From definition 3 page 11 α P L1
pRq.

Therefore, from Young inequality (see, e.g., [25, p. 525]) we have that
�

1
|v|
α
�

�

v

�

� ũ
	

P L1
pRq

and is r�π, πs band limited since ũ is band limited in this range. Hence, we deduce (see, e.g., [15,
p. 354]) that, for any x P R,

�8

¸

n��8

�

1

|v|
α
�

�

v

	

� ũ




pnqsincpx� nq �

�

1

|v|
α
�

�

v

	

� ũ




pxq. (26)

We now take care of the second term on the RHS of (25). For any x P R, we have
°

�8

n��8 sincpx�
nq � 1. Thus, combining (25) and (26) we have that, for any x P R,

�8

¸

n��8

Epobspnqqsincpx� nq �

�

1

|v|
α
�

�

v

	

� ũ




pxq � µ

�

»

R

αptqdt

�

. (27)

From definition 2.1 page 8, for any x P R we have upxq � ũpxq�µ. In addition,
³

8

�8

1
|v|
αp t

v
qµdt �

µ
³

8

�8

αptqdt. Hence, from (27) we obtain that, for any x P R,

�8

¸

n��8

Epobspnqqsincpx� nq �

�

1

|v|
α
�

�

v

	

� u




pxq. (28)

This concludes step b).

We now combine the steps a) and b). Combining (16) and (17) page 13, the series

�8

¸

n��8

obspnqsincpx� nq �

�8

¸

n��8

˜obspnqsincpx� nq �

�8

¸

n��8

Epobspnqqsincpx� nq

converges, for any x P R, in quadratic mean to a limit that we can therefore call obspxq. Indeed,
from step a), it is the sum of the quadratic mean convergent series

°N
n��N

˜obspnqsincpx � nq

and, from (28), of the deterministic constant
�

1
|v|
α
�

�

v

�

� u
	

pxq. Consequently, we deduce that,

for any x P R, the series defined in (16) page 13 converges in quadratic mean. Thus, we call
obspxq, for any x P R, this limit. We now turn to step c) that gives explicit formulae for the
expectation and variance of the quadratic mean convergent series obspxq defined in (16).

Step c): The convergence in quadratic mean implies the convergence of the two firsts
moments (see [20, Ex 5.6 (a)-(b), p. 158]). Therefore, for any x P R we have

E

�

Ņ

n��N

obspnqsincpx� nq

�

NÑ8

ÝÝÝÝÑ E

�

8

¸

n��8

obspnqsincpx� nq

�

(29)

and

var

�

Ņ

n��N

obspnqsincpx� nq

�

NÑ8

ÝÝÝÝÑ var

�

8

¸

n��8

obspnqsincpx� nq

�

. (30)

In addition, the linearity of the expectation and the independence of the observed samples
obspnq imply that, for any x P R,

E

�

Ņ

n��N

obspnqsincpx� nq

�

�

Ņ

n��N

Epobspnqqsincpx� nq (31)
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and

var

�

Ņ

n��N

obspnqsincpx� nq

�

�

Ņ

n��N

varpobspnqqsinc2px� nq. (32)

Therefore, combining (29) with (31) and the definition (16) page 13 of obspxq we have

Ņ

n��N

Epobspnqqsincpx� nq
NÑ8

ÝÝÝÝÑ Epobspxqq, (33)

for any x P R. Similarly, combining (30) with (32) and the definition (16) page 13 of obspxq we
have that

Ņ

n��N

varpobspnqqsincpx� nq
NÑ8

ÝÝÝÝÑ varpobspxqq, (34)

for any x P R. Combining (28) and (33) we have that, for any x P R,

Epobspxqq �

�

1

|v|
α
�

�

v

	

� u




pxq. (35)

From proposition 3.1 page 12 and (34) we deduce that, for any x P R,

Ņ

n��N

��

1

|v|
α
�

�

v

	

� u




pnq � σ2
r

�

sinc2px� nq
NÑ8

ÝÝÝÝÑ varpobspxqq. (36)

Since, for any x P R, we have
°

�8

n��8 sinc2px�nq � 1, from (36) we deduce that, for any x P R,

varpobspxqq �
�8

¸

n��8

��

1

|v|
α
�

�

v

	

� u




pnqsinc2px� nq

�

� σ2
r . (37)

In addition, from corollary 3.3 page 13, we deduce that, for any x P R, varpobspxqq is finite.
Thus, we proved

Proposition 3.4. (Mathematical feasibility of the Shannon-Whittaker interpolation
of the observed samples obspnq n P Z.)

The Shannon-Whittaker interpolation of the observed samples obspnq n P Z defined in
definition 3 page 11 is, for any x P R, the quadratic mean convergent series

obspxq �

�8

¸

n��8

obspnqsincpx� nq.

From (35), its expectation is, for any x P R,

Epobspxqq �

�

1

|v|
α
�

�

v

	

� u




pxq. (38)

From (37), its variance is finite and, for any x P R,

varpobspxqq �
�8

¸

n��8

��

1

|v|
α
�

�

v

	

� u




pnqsinc2px� nq

�

� σ2
r .

We proved that the Shannon-Whittaker interpolation is mathematically feasible for the
observed samples of a coded exposure camera defined in definition 3 page 11. We shall now
turn to the definition of the deconvolved crisp image that we shall denote uestpxq.
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3.2 Mathematical feasibility of the the deconvolved crisp image uestpxq

This section treats the step 2 of our work-plan. The study yields to proposition 3.7 page 19.
Recall that the existence of obspxq �

°

�8

n��8 obspnqsincpx�nq is given in proposition 3.4 page 16.
Formally, we wish to consider obs � γ where γ will be the deconvolution filter that inverses

the convolution by the exposure function 1
|v|
α
�

�

v

�

in proposition 3.4 equation (38). Note that

we cannot recur to a Wiener filter to define γ. Indeed, due to the Poisson photon (shot) noise,
the noise in of our observations obspnq defined in definition 3 page 11 is not white additive.
Therefore, to the best of our knowledge, a Wiener filter is not defined (see, e.g., [22, p. 205], [9,
p. 95], [55, p. 159] see also [10, p. 252] for a definition). Instead of using a Wiener filter we
shall propose a filter designed so that the restored crisp image uest is unbiased.

Beside the definition of the inverse filter γ, we need to prove the mathematical feasibility
of “obs � γ”. This is needed because obs given in proposition 3.4 page 16 does not belong to a
classic Lebesgue space. In addition we need to deduce the conditions on the exposure function
α (see definition 3 page 11) to guarantee that Epγ � obspxqq � upxq for any x P R, i.e., the
conditions on α so that its convolution can be inverted.

We assume that the exposure function α P L1
pRq X L2

pRq X L8

pRq defined in definition 3
page 11 satisfies α̂pξvq � 0 for any ξ P r�π, πs. Under that condition the convolution p 1

|v|
α
�

�

v

�

q�

u is invertible because u is r�π, πs band-limited. Thus, provided α̂pξvq � 0 for any ξ P r�π, πs,
we can consider the inverse filter (defined by its inverse Fourier transform (xv))

γpxq :� F
�1

�

1

r�π,πspξq

α̂pξvq




pxq. (39)

This filter γ will be applied to the Shannon-Whittaker interpolated image obspxq with x P R

given in proposition 3.4 page 16. Since we assume that α̂pξvq � 0 for any ξ P r�π, πs we

have |α̂pξvq| ¡ 0 for any ξ P r�π, πs. Hence, we deduce that R Q ξ ÞÑ
1

r�π,πspξq

α̂pξvq
is bounded,

has compact support and therefore belongs to L1
pRq X L2

pRq. From its definition (39) and
Riemann-Lebesgue theorem (see e.g. [23, prop. 2.1]) we have that γ is continuous. In addition,
we have γ P L2

pRq as the inverse Fourier transform of a function that belongs to L2
pRq. Thus,

we deduce that

γ2pxq ¤
C

1� x2
�x P R (40)

for some constant C ¡ 0. Furthermore from (39) we have γ̂pξq �
1

r�π,πspξq

α̂pξvq
. Therefore, we have

γ̂p0q �
1

α̂p0q
�

1
³

R

αpxqdx
. (41)

Before we turn to the mathematical feasibility of “obs�γ”, we first prove that the inverse filter γ
defined in (39) gives an unbiased estimator of u that is Epobsq�γ � u. Adhuc, we used the Poisson
summation formula (see annex G page 39) to prove equalities like “

°

8

n��8 γpx � nq � γ̂p0q”.
The use of the Poisson summation formula requires deterministic functions that belongs to
L1
pRq. Since γ P L2

pRq but α R L1
pRq we cannot recur to the Poisson summation formula (ix)

used elsewhere. Instead we introduce that following lemma

Lemma 3.5. (Poisson like formula for the inverse filter γ.)
For any x P R, we have

�8

¸

n��8

γpx� nq �
1

³

R

αpxqdx
. (42)
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for γ defined by (39).

Proof. The proof is in annex E page 35.

The next lemma means that in the idealistic noiseless case where one observes Epobspnqq for
n P Z, the inverse filter defined in (39) page 17 allows us to get back the ideal crisp image u.
This lemma will be useful in the noisy (general) case and to compute the MSE and SNR of the
coded exposure method.

Lemma 3.6. (The inverse filter γ gives back an unbiased estimator of u.)
Provided that α̂pξvq � 0 for any ξ P r�π, πs, we have

�8

¸

n��8

�

1

|v|
α
�

�

v

	

� u




pnqγpx� nq � upxq, (43)

for any x P R and γ defined by (39) page 17.

Proof. The proof is in annex F page 36.

The lemma 3.6 page 18 proves that, at least in the idealistic noiseless case, i.e., when one
observes the noiseless samples Epobspnqq for n P Z, the inverse filter γ is able to recover a crisp
image. However, in a practical situation the observed samples are noisy. Therefore, we now
turn to the general noisy case.

In order to get an unbiased estimate of u, i.e., a final crisp image we would like to define

“uest :� obs � γ”. (44)

In the sequel, using lemma 3.6 page 18, we shall prove that Epuestpxqq � upxq for any x P R.
(This means that uest is an unbiased estimator of u.) However, the convolution in (44) is unde-
fined because the random function obs that comes from the Shannon-Whittaker interpolation
of the observed samples defined in proposition 3.4 page 16 does not belong to any Lebesgue
space. Therefore, we now justify the mathematical feasibility of (44) that (formally) defines the
final crisp image.

From its definition (39) page 17, we have that γ̂ is compactly supported (on r�π, πs) and
bounded. Therefore, γ̂ P L2

pRq X L1
pRq. From γ̂ P L1

pRq and Riemann-Lebesgue theorem (see
e.g. [23, prop. 2.1]) we deduce that γ is bounded. In addition, from γ̂ P L2

pRq we have that
γ P L2

pRq. Consequently, γ is r�π, πs band-limited and C8

pRq, bounded, and belongs to L2
pRq.

This means that γ is a nice inverse filter.
We need to recur, again, to a convergence argument for the definiteness of uest. Since, γ is

r�π, πs band limited, for any x P R, we have psincp� � nq � γq pxq � γpx�nq. Therefore, for any
x P R, we set

u

N
estpxq : �

Ņ

n��N

obspnqγpx� nq. (45)

Note that hereinafter, uN
estpxq denotes the N -th term of the sequence defined in (45).

Our goal is to find an adequate mode of convergence, for any x P R, of these finite sums to

uestpxq :�
8

¸

n��8

obspnqγpx� nq.
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From (45), for any x P R, we have

Epu

N
estpxqq �

Ņ

n��N

E pobspnqq γpx� nq. (46)

Combining proposition 3.1 page 12 and (46), for any x P R, we have

Epu

N
estpxqq �

Ņ

n��N

��

1

|v|
α
�

�

v

	

� u




pnq

�

γpx� nq. (47)

From lemma 3.6 page 18 we deduce that, for any x P R,

Epu

N
estpxqq

NÑ8

ÝÝÝÝÑ upxq. (48)

We have

Proposition 3.7. (Validity/Existence of the crisp deconvolved image uest.)
Consider the observed samples obspnq defined in definition 3 page 11 and the inverse filter

γ defined in (39) page 17. We have that, for any x P R, the series

uestpxq :�
8

¸

n��8

obspnqγpx� nq

converges in quadratic mean. Furthermore, for any x P R, its expectation is

Epuestpxqq � upxq

and its variance is finite and

varpuestpxqq �

8

¸

n��8

varpobspnqqpγpx � nqq2.

This proposition means that uest is an unbiased estimator of the observable scene u.

Proof. The proof follows exactly the same arguments as for the construction of obspxq lead-
ing to proposition 3.4 page 16. Indeed, the decay of γ given in (40) page 17 is the same
as the sinc. Therefore, we obtain that, for any x P R, uN

estpxq �
°N

n��N obspnqsincpx � nq

converges, in quadratic mean, to a limit that we can therefore call uestpxq. This mode of
convergence implies the convergence of the two firsts moments (see [20, Ex 5.6 (a)-(b), p.

158]). Therefore, we again obtain that, for any x P R, EpuN
estpxqq

NÑ�8

ÝÝÝÝÝÑ Epuestpxqq. Thus,
from (48) we deduce that, for any x P R, Epuestpxqq � upxq. In addition, for any x P R,

we have varpuN
estpxqq

NÑ�8

ÝÝÝÝÝÑ varpuestpxqq. Furthermore, the independence of obspnq implies
that, for any x P R, varpuN

estpxqq �
°N
�N varpobspnqqγ2px � nq. Thus, we have varpuestpxqq �

°

�8

�8

varpobspnqqγ2px � nq   �8 for any x P R. Indeed, from corollary 3.3 page 13, we have
supn varpobspnqq   �8. From its definition (39) page 17 we have that γ is r�π, πs band-limited.
In addition, from (40) page 17 we have that γ2 P L1

pRq. Hence, we deduce that γ2 is such that
xγ2pξq is supported on r�2π, 2πs. Moreover, from the definition of γ (39) page 17 we have

xγ2p2πq � pγ̂ � γ̂qp2πq �

» π

�π

1

r�π,πsp2π � ξq

α̂pvξqα̂pvp2π � ξqq
dξ. (49)
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The integrand in (49) is non zero only on the zero Lebesgue measure set tπu. Therefore, we

havexγ2p2πq � 0. Similarly, we havexγ2p�2πq � 0. Thus, from the Poisson formula (see annex G
page 39) we deduce that

�8

¸

n��8

xγ2p2πnq �xγ2p0q �
�8

¸

n��8

γ2px� nq � }γ}2L2
pRq

. (50)

From corollary 3.3 page 13 we have supn varpobspnqq   �8. Hence, for any x P R we have
varpuestpxqq ¤ supn varpobspnqq}γ}L2

pRq

  �8 which concludes the proof.

Proposition 3.7 page 19 proves the feasibility of the restore crisp image uest. This concludes
the step 2 of our work plan. We now turn to the step 3 of our work plan that is the calculations
of the MSE and SNR of uest with respect to the observable scene u (see definition 2.1 page 8).

3.3 The MSE and SNR of the restored crisp image uest

We have defined the deconvolved crisp image uest in proposition 3.7 page 19. We shall now
turn to the step 3 of our work-plan that provides closed formulae for the average MSE and SNR
of the coded exposure method. The study yields to theorem 3.8 page 23.

Recall that, from proposition 3.7 page 19, for any x P R, we have

Epuestpxqq � upxq. (51)

Therefore, for any x P R, we have

E

�

|uestpxq � upxq|2
	

� varpuestpxqq. (52)

In order to provide closed formulae for the MSE and SNR we need to evaluate varpuestpxqq and

the limit of 1
2R

³R

�R
varpuestpxqqdx when R Ñ �8.

We now calculate varpuestpxqq. From proposition 3.7 page 19, for any x P R, we have

varpuestpxqq �

8

¸

n��8

varpobspnqqpγpx � nqq2. (53)

Combining (14) page 12 and (53), for any x P R, we have

varpuestpxqq �

8

¸

n��8

���

1

|v|
α
�

�

v

	

� u




pnq � σ2
r




pγpx� nqq2
�

. (54)

Therefore, from (54) we deduce that, for any x P R,

varpuestpxqq �

8

¸

n��8

��

1

|v|
α
�

�

v

	

� u




pnqpγpx � nqq2
�

� σ2
r

8

¸

n��8

pγpx� nqq2. (55)

From definition 3 page 11, we have that α is non negative. Therefore, combining (15) page 13
and (55), for any x P R, we have

varpuestpxqq �

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

�pµ}α}L1
pRq

�σ2
r q

8

¸

n��8

pγpx�nqq2. (56)
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Hence, combining (50) page 20 and (56), for any x P R, we have

varpuestpxqq �

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

� pµ}α}L1
pRq

� σ2
r q}γ}

2
L2

pRq

. (57)

Moreover, from the definition of γ (39) page 17 and Plancherel identity (146) we have

}γ}2L2
pRq

�

1

2π

»

�8

�8

1

|α̂pξvq|2
1

r�π,πspξqdξ. (58)

Therefore, }α}L1
pRq

�

³

R

αptqdt. Thus, combining (57) and (58) we deduce that, for any x P R,

varpuestpxqq�

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

�

µ}α}L1
pRq

� σ2
r

2π

»

R

1

|α̂pξvq|2
1

r�π,πspξqdξ.

(59)
Hence, combining (52) and (59), for any x P R, we have

E

�

|uestpxq � upxq|2
	

�

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

�

µ}α̂}L1
pRq

� σ2
r

2π

»

R

1

r�π,πspξqdξ

|α̂pξvq|2
.

(60)

We now calculate the limit of 1
2R

³R

�R
varpuestpxqqdx when R Ñ �8. The function R Q x ÞÑ

°

8

n��8

��

1
|v|
α2
�

�

v

�

� ũ
	

pnqpγpx� nqq2
�

belongs to L1
pRq. Indeed, we have

»

�8

�8

�

�

�

�

�

8

¸

n��8

��

1

|v|
α
�

�

v

	

�ũ




pnqpγpx � nqq2
�

�

�

�

�

�

dx ¤

»

�8

�8

8

¸

n��8

�

�

�

�

�

�

1

|v|
α
�

�

v

	

�ũ




pnq

�

�

�

�

pγpx� nqq2
�

dx.

(61)
Hence, it follows from (61) and Fubini theorem (see, e.g., [44, p. 196]) that

»

�8

�8

�

�

�

�

�

8

¸

n��8

��

1

|v|
α
�

�

v

	

�ũ




pnqpγpx� nqq2
�

�

�

�

�

�

dx ¤

8

¸

n��8

�

�

�

�

�

�

1

|v|
α
�

�

v

	

�ũ




pnq

�

�

�

�

»

�8

�8

pγpx� nqq2dx

�

.

(62)
For any n P Z, we have

»

�8

�8

pγpx� nqq2dx � }γ}2L2
pRq

.

Therefore, from (62) we deduce that

»

�8

�8

�

�

�

�

�

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

�

�

�

�

�

dx ¤ }γ}2L2
pRq

8

¸

n��8

�

�

�

�

�

1

|v|
α
�

�

v

	

� ũ




pnq

�

�

�

�

. (63)

From definition 2.1 page 8 we have ũ P L1
pRq and ũ is r�π, πs band limited. From definition 3

page 11 α P L1
pRq. Therefore, from the Poisson summation formula (see annex G page 39) we

obtain that
8

¸

n��8

�

�

�

�

�

1

|v|
α
�

�

v

	

� ũ




pnq

�

�

�

�

� }

1

|v|
α
�

�

v

	

� ũ}L1
pRq

  �8. (64)
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Indeed, from Young inequality (see, e.g., [25, p. 525]) we have that
�

1
|v|
α
�

�

v

�

� ũ
	

P L1
pRq. In

addition, from (40) page 17 γ P L2
pRq. Thus, combining (63) and (64) we deduce that

»

�8

�8

�

�

�

�

�

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx � nqq2
�

�

�

�

�

�

dx   �8. (65)

From (65), we deduce that

1

2R

» R

�R

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

dx
RÑ�8

ÝÝÝÝÝÑ 0. (66)

For any R ¡ 0, from (59) we have that

1

2R

» R

�R

varpuestpxqqdx �
1

2R

�

» R

�R

8

¸

n��8

��

1

|v|
α
�

�

v

	

� ũ




pnqpγpx� nqq2
�

dx

�

(67)

�

µ}α}L1
pRq

� σ2
r

2π

»

R

1

|α̂pξvq|2
1

r�π,πspξqdξ. (68)

Combining (66) and (67)-(68), we obtain

1

2R

» R

�R

varpuestpxqqdx
RÑ8

ÝÝÝÑ

µ}α}L1
pRq

� σ2
r

2π

»

R

1

|α̂pξvq|2
1

r�π,πspξqdξ. (69)

Hence, combining (52) page 20 and (69), we deduce that, for any x P R,

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx
RÑ8

ÝÝÝÑ

µ}α}L1
pRq

� σ2
r

2π

»

R

1

|α̂pξvq|2
1

r�π,πspξqdξ. (70)

Thus, we proved the following theorem
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Theorem 3.8. (MSE and SNR of the coded exposure method.)
Consider a scene upx� vtq of mean µ (see definition 2.1 page 8) that moves at velocity v and
let σ2

r the (finite) variance of the additive (readout) noise. From (70) the MSE of the final crisp
image uest defined in proposition 3.7 page 19 satisfies

MSEflutterpαq :� lim
RÑ�8

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx �
1

2π

» π

�π

µ}α}L1
pRq

� σ2
r

|α̂pξvq|2
dξ. (71)

From (51) and (69) the SNR of a coded exposure camera is

SNRflutterpαq :�
limRÑ�8

1
2R

³R

�R
E puestpxqq dx

b

limRÑ�8

1
2R

³R

�R
var puestpxqq dx

�

µ


1
2π

³π

�π

µ}α}
L1

pRq

�σ2
r

|α̂pξvq|2
dξ

. (72)

We now connect the formulae in theorem 3.8 with the existing literature on the coded
exposure method. We have that the mean photon emission µ relates to ī0 in, e.g., [3, section
2]. In addition, from (72), we have that for fixed exposure function α and additive (readout)

noise variance σ2
r the SNR evolves proportionally to



µ

1�
σ2
r
µ

with the mean photon emission

µ. In particular, from (72), if σ2
r � 0 and for a fixed α we deduce that the SNR evolves

proportionally to
?

µ and we retrieve the fundamental theorem of photography. We now turn
to the optimization of the coded exposure method. We shall optimize the coded exposure
method for given observed scene and sensor. This means that the mean photon emission µ and
additive (readout) noise variance σ2

r are fixed. Under these conditions, from theorem 3.8 we
deduce that the optimization of the coded exposure method boils down to finding an exposure
function α that minimizes the MSE given by formula (71) or, equivalently, of that maximizes the
SNR given by formula (72). Notice that, to the best of our knowledge, this is the optimization
framework considered in the literature on the coded exposure method [1, 3, 2, 5, 17, 29, 27, 34].

Recall that it is equivalent to minimize (71) or to maximize (72) with respect to the exposure
function α. Therefore, in the sequel we choose w.l.o.g. to use formula (71) and to evaluate the
performance of the coded exposure method in terms of MSE. The calculation for the SNR can
be immediately deduced. We now summarize the construction of section 3.

To sum up, in section 3 we have defined the observed samples obspnq of a coded exposure
camera (see definition 3 page 11). We have defined the Shannon-Whittaker interpolated image
obspxq for any x P R (see proposition 3.4 page 16) of the stochastic observed samples obspnq

that are only obtained for n P Z. We have defined the inverse filter and proved rigorously the
existence of uest i.e., the final crisp image. The final crisp uestpxq is designed to ensure that
uestpxq is equal to the observable scene upxq in expectation i.e., Epuestp�qq � up�q. In addition,
this final crisp image uest is obtained from the observed stochastic samples obspnq (see propo-
sition 3.7 page 19) knowing the exposure function α and the relative camera scene velocity
v. Theorem 3.8 gives the MSE and SNR of the coded exposure method as a function of the
exposure function α (see definition 3 page 11), of the relative camera scene velocity v, of the
mean photon emission µ and of the additive noise variance (see definition 2.1 page 8).

As an easy application of theorem 3.8, we have the following corollary that provides the MSE
of any invertible snapshot, i.e. that satisfies |v|∆t   2 (see the discussion on page 12) where ∆t

is the exposure time. This corollary will also be needed to compare the coded exposure method
and the snapshot, in terms of MSE, in section 4.
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Corollary 3.9. (MSE of a snapshot with an exposure time of ∆t.)
Consider a scene upx � vtq of mean µ (see definition 2.1 page 8) that moves at velocity v

and let σ2
r be the (finite) variance of the additive (readout) noise. The MSE of a snapshot with

exposure time ∆t is

MSEsnapshotp∆tq � lim
RÑ�8

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx �

» π

�π

µ∆t� σ2
r

�

�

�

∆tsinc
�

ξv∆t
2π

	

�

�

�

2
dξ. (73)

Proof. The proof is immediate combining (13) page 12 and (71).

We now turn to section 4 that proposes a theoretical evaluation of the gain, in terms of
MSE, of the coded exposure method, with respect a snapshot.

4 An upper bound of performance for coded exposure cameras

This section study the gain, in terms of MSE, of the coded exposure method, with respect to
a snapshot, as a function of the exposure code sampling rate. The study yields to a theoretical
bound that is formalized in theorem 4.1 page 28 and corollary 4.2 page 31. The bound is valid
for any exposure code provided |v|∆t ¤ 1. (We recall that the exposure code sampling rate ∆t

is defined in definition 3 page 11.) This means that the proposed bound is an upper bound for
the gain of any coded exposure camera, provided |v|∆t ¤ 1.

We first compute a lower bound for the MSE of coded exposure camera. This lower bound
is then used to compute an upper bound for the gain of coded exposure cameras, in terms of
MSE, by comparison with the MSE of a well chosen snapshot (standard camera).

We now calculate a lower bound for the MSE of coded exposure cameras. From (71) page 23,
we recall that, for any exposure function α, we have that

lim
TÑ�8

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx �

» π

�π

µ}α}L1
pRq

� σ2
r

|α̂pξvq|2
dλpξq

2π
, (74)

where dλ denotes the Lebesgue measure on pR,BpRqq. From its definition 3 page 11 we have
that αptq P r0, 1s for any t P R and that α P L1

pRq. Hence, we deduce that α2
¤ α and that

³

R

|αpxq|dx ¥
³

R

|αpxq|2dx. Thus, we derive that α P L2
pRq and from (74) we obtain that

lim
RÑ�8

1

2R

» R

�R

E

�

|uestpxq � upxq|2
	

dx ¥

» π

�π

µ}α}2
L2

pRq

� σ2
r

|α̂pξvq|2
dλpξq

2π
, (75)

for any exposure function. Furthermore, the function r0,�8q Q x ÞÑ x2 is strictly convex. In

addition, we have dλpr�π,πsq

2π
� 1. Thus, by Jensen inequality (see, e.g., [20, p. 232]) we obtain

that, for any exposure function α,

�

µ}α}2L2
pRq

� σ2
r

	

» π

�π

1

|α̂pξvq|2
dλpξq

2π
¥

�

µ}α}2L2
pRq

� σ2
r

	 1
³π

�π
|α̂pξvq|2

dλpξq

2π

. (76)

The strict convexity of r0,�8q Q x ÞÑ x2 implies that the equality case in (76) is realized
when ξ ÞÑ |α̂pξvq|2 is constant say C ¡ 0 on the interval r�π, πs. By Plancherel formula (146),
from the term }α}2

L2
pRq

in (76), we deduce that an optimal α, if it exists, satisfies α̂ supported

on the interval r�π|v|, π|v|s. Therefore, we deduce that an optimal α, if it exists, satisfies
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|α̂pξq| � C1
r�π|v|,π|v|spξq, for some constant C ¡ 0. Assuming the existence of such a function

for any C, we can produce a lower bound of (76) by adjusting the constant C. The value of the
constant C will by computed later on. For example it is necessary that |α| ¤ 1 for a function
to be an exposure function (see definition 3 page 11).

We shall now build an exposure code (see definition 3 page 11) such that |α̂pξq| � C1
r�π|v|,π|v|spξq

and compute its MSE using theorem 3.8 page 23. We shall relax the constraint 0 ¤ α ¤ 1 to
|α| ¤ 1. The feasible functions of this relaxed problem is thus bigger (in the sense of the in-
clusion). This means that the bound, in terms of MSE, that we shall obtain is a lower bound
for the MSE of coded exposure cameras (see definition 3 page 11). Note that the bound we
shall provide applies to finitely supported (finite codes) exposure functions as well as theoretical
infinitely supported exposure functions.

From definition 3 page 11, by an easy calculation of a Fourier transform (xv), we deduce
that, for any ξ P R,
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Hence, combining (77) the inequality (76) rewrites as
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(78)
Note that the LHS of (78) is nothing but the MSE of a coded exposure camera with exposure
code pαkqk. By a change of variable the RHS of (78) rewrites as
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(79)

As we have just seen, a lower bound for the MSE of the coded exposure method can obtained

by finding an exposure code such that ξ ÞÑ
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is constant on

r�π, πs. We shall now construct such a code. The construction is based on Fourier series. In
other words, we shall identify the ak with the Fourier series coefficient of a well chosen function.
As soon as |v|∆t ¤ 1, we have r�π|v|∆t, π|v|∆ts � r�π, πs. Thus, provided |v|∆t ¤ 1 we have
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Provided |v|∆t ¤ 1, from the Fourier series decomposition (xix), given all the αk we deduce
that

°

�8

k��8 αke
�ikξ is the Fourier series of the 2π periodic function that writes as
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Conversely, provided |v|∆t ¤ 1, consider the 2π periodic and even function f : R Ñ R defined
by

f pξq �
C

∆tsinc
�

ξ
2π

	

1

r�π|v|∆t,π|v|∆tspξq for any ξ P r�π, πs, (82)

where C a positive constant that we shall fix shortly. Provided |v|∆t ¤ 1 the function f defined
in (82) is well defined and f P L2

pr�π, πsq. Therefore, f has a Fourier series decomposition (xix)
and f pξq �
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ikξ for, in particular, any ξ P r�π, πs. In addition, since from its

definition (82) we have f P L2
pr�π, πsq is even, we have ckpf q P R and pckpf qqk P ℓ2pZq. Thus,

we have
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Thus, combining (82) and (83) we obtain
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From now on we choose ak :� ckpf q for any k P Z. Combining (80)-(81) and (84) we have
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Hence, combining (76) page 24 and (85) we obtain
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We now fix the value of C. From their definitions (xix), for any k P Z, we have
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From (86) we would like the constant C to be as large as possible to get our lower bound.
However, from (87) we deduce that we need C ¤

1
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in order to ensure that

|ckpf q| ¤ 1 for any k P Z. Therefore, we deduce that the choice
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in the definition of f (82) is enough to provide a lower bound to the MSE of coded exposure
cameras.

We recall that (78) is valid for any exposure code provided |v|∆t ¤ 1. In addition, provided
|v|∆t ¤ 1, we can choose the ak given by the Fourier series decomposition (xix) of f defined
in (82) with the constant C given by (88). Furthermore, this choice provides a lower bound
of (78) page 25. Therefore, combining (78) and (86) we deduce that
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for any exposure function α. Hence, combining (75) page 24, (77) and (89), we obtain
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for any exposure code. It remains to evaluate
°

�8
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2. From its definition (82) page 26

f is 2π periodic and we have f P L2
pr�π, πsq. Therefore, by Parseval formula (147) and (82)

page 26 we have
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Thus, from (91) we have
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On the one hand, from (92), we have
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On the other hand, from (88), we have
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Thus, combining (93) and (94) we deduce that
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Therefore, from (95) we deduce that
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Thus, combining (90) and (96) we obtain
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for any exposure code. Thus, we proved
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Theorem 4.1. (A lower bound for the MSE of coded exposure cameras.)
Consider a scene upx�vtq of mean µ (see definition 2.1 page 8) that moves at velocity v and let
σ2
r the (finite) variance of the additive (readout) noise. The MSE of any coded exposure camera

satisfies
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as soon as |v|∆t ¤ 1.

In order to evaluate the maximal theoretical “gain” of coded exposure camera we need to
compare the bound in terms of MSE given in theorem 4.1 with the MSE of a snapshot. We now
compute the MSE of a well chosen snapshot. From the definition of the sinc function (xvii) we
have
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Hence, from (98) we have
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Thus, from (99) we obtain
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Therefore, from (100) we deduce that
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Thus, combining (73) page 24 and (101), we deduce that the MSE of a snapshot with exposure
time equal to ∆t :� 1

|v|
is
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In addition the optimal snapshot, if it exists has, by definition, a MSE lower or equal to the one
in equation (102). In other words, (102) provides an upper bound for the MSE of the optimal
snapshot. We now compare the MSE of the coded exposure method and of this snapshot.
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We have
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In addition, by Jensen inequality (see, e.g., [20, p. 232]), we have
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Hence, from (105) we deduce that
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Thus, combining (103)-(104) and (106) we deduce that
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Therefore, combining (97) page 28 and (107) we deduce that the MSE of any coded exposure
camera satisfies
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Hence, from (108) we deduce that
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Thus, we obtain
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Consequently, from (110) we have
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Thus, we proved
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Corollary 4.2. (Upper bound of any coded exposure camera in terms of MSE with
respect to a snapshot)
Consider a scene upx�vtq of mean µ (see definition 2.1 page 8) that moves at velocity v and let
σ2
r the (finite) variance of the additive (readout) noise. The gain in terms of MSE of any coded

exposure camera with respect to a snapshot with exposure time equal to ∆t :� 1
|v|

is from (111)
satisfies
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for any exposure function α that satisfies |v|∆t ¤ 1.

We now depict, in figure 2, the upper bound of corollary 4.2 varying the quantity |v|∆t.
Note that the quantity |v|∆t is inversely proportional to the temporal frequency sampling of
the exposure code. Note that the curve is an upper bound. Thus, the actual gain of the coded
exposure method is below this curve.
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Figure 2: This figure depicts the upper bound proved in corollary 4.2. The x-axis represents the
quantity |v|∆t that is inverse proportional to the frequency sampling of the exposure function.
The x-axis varies in the interval r0, 1s because corollary 4.2 page 31 is valid in this range. The
y-axis represents the upper bound of the gain, in terms of root mean square error, of the flutter
with respect to a snapshot with an exposure time ∆t � 1

|v|
. Note that the curve is an upper

bound. Thus, the actual gain of the coded exposure method is below this curve.

We now illustrate numerically corollary 4.2 in figure 3 and table 1.

5 Conclusion
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Figure 3: In this experiment, we assume that the scene s moves at velocity v � 1 pixel per
second. The additive (readout) noise is Gaussian with a standard deviation equal to 10. We
also assume that the scene emits 625 photons per seconds (for other values see table 1 pagee 33).
On the top left panel: the observed image using the Agrawal, Raskar et al. code [38, 39]. On
the top right panel: the observed image for snapshot an exposure time of 1 second, i.e., the blur
support is 1 pixel. On the bottom left panel: the reconstructed image for the Agrawal, Raskar
et al. code [38, 39]. On the bottom right panel: the reconstructed image for the snapshot
(blur support of 1 pixel). This means that for the Agrawal, Raskar et al. code the blur has
a support of 52 pixels. In other words, this code permits to increase the exposure time by a
factor 52 compared to the snapshot. The RMSE using the Agrawal, Raskar et al. code is equal
to 9.84. The RMSE of the snapshot is equal to 5.96. We refer to table 1 for different values of
mean photon count and additive (readout) noise variance. This simulation is based on a variant
of [47].
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Table 1: This table provides the evolution of the RMSE varying the intensity of the mean
photon emission for a fixed additive (readout) noise variance. The additive (readout) noise is
Gaussian with variance σ2

r � 100. A mean photon count of k means that the camera collects
k photons if it integrates 1 second. The scene moves, w.l.o.g. at velocity v � 1 pixel per
second. The snapshot integrates during 1 second. The exposure code used is the Agrawal,
Raskar et al. code [38, 39]. This code permits to collect more photons than the snapshot but
the deconvolution kernel is more severe than the deconvolution kernel of the snapshot.

Mean photon
count per second 36 64 100 225 625 1200 2500 4900 104

Readout noise
variance σ2

r 100 100 100 100 100 100 100 100 100

RMSE flutter 42.4 31.83 25.09 16.52 9.84 7.12 4.94 3.57 2.49
RMSE snapshot 38.75 25.40 18.44 10.88 5.96 4.22 2.89 2.09 1.47

We have proposed a mathematical model of coded exposure cameras. The model includes
the Poisson photon (shot) noise and any additive readout noise of finite variance. The model is
based on the Shannon-Whittaker framework that assumes band limited images. This formalism
has allowed us to give closed formulae for the Mean Square Error and Signal to Noise Ratio of
coded exposure cameras. In addition, we have given an explicit formula that gives an absolute
upper bound for the gain of any coded exposure cameras, in terms of Mean Square Error, with
respect to a snapshot. The calculations take into account for the whole imaging chain that
includes Poisson photon (shot) noise, any additive (readout) noise of finite variance in addition
to the deconvolution. There is a rich body of empirical results on the coded exposure method.
They suggest higher gains that our formalism allowed us to prove. The discrepancy may come
from an imperfect model of our mathematical coded exposure camera. Indeed, our model
assumes that the sensor does not saturate, that the relative camera scene velocity is known,
that the scene has finite energy and is observed through an optical system that provides a cut
off frequency, that the additive (readout) noise has a finite variance, neglects the boundaries
effects due to the deconvolution and neglects the quantization effects. How the results change
if one has to estimate the velocity is, to the best of our knowledge, an open question.
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A Validity of the one dimensional framework

Without loss of generality, we express the coordinates of the two dimensional camera scene
velocity vector using the sampling grid as Galilean reference frame. Therefore, in this reference
frame, the angle θ between the two dimensional velocity vector and, e.g., the x-axis of the
sampling grid is known. Consider the rotation re-sampling operator of angle θ on L2

pR

2
q.

This rotation operator re-sample the image so that the motion is parallel to one of the grid
axis, e.g., the x-axis. The motion blur is a one dimensional phenomenon. Therefore, we can
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apply the motion blur model to each line of the image parallel to the x-axis. Thus, from the
mathematical viewpoint, the motion blur is mathematically equivalent to a one dimensional
convolution of a exposure function by the one dimensional observed stochastic scene. Indeed,
the whole convolution/deconvolution model is applied to each line of the image parallel to the x-
axis. In addition, the image rotation operator is isometric in L2

pR

2
q. Therefore, the calculations

of MSE and SNR as if the images were one dimensional signals hold for two dimensional images
by easy expectation and variance calculations. This means that the theorems that we shall
prove in the sequel are valid for two dimensional images.

B It is enough to study only r�π, πs band limited functions

This section justifies that it is enough to consider only r�π, πs band limited functions. As we
have seen page 3, it is enough to model the coded exposure method as if the images were one
dimensional signals. Hence, for the sake of the clarity, we can justify this r�π, πs as if the image
was a sound.

For the sake of the clarity, consider momentarily that the deterministic function f represents
a sound. (This example is illustrative of our situation because u defined in definition 2.1 page 8
is one dimensional.) Since we consider a sound f , we also momentarily consider that the unit of
the variable x in (xv) is the second (denoted s). From the definition of f̂ (see (xv)) we deduce
that ξ is in Hz

2π
(Hz denotes Hertz). If f̂ satisfies f̂pξq � 0 for any ξ P R such that |ξ| ¡ π,

i.e., is r�π, πs band limited then the maximal frequency of f is π
2π

in Hz. Therefore, from the
Shannon-Whittaker sampling theorem, f is well sampled with one sample every second.

Consider now an arbitrary function f and a positive real number c. If f is sampled with
one sample every 1

c
s then, from the Shannon-Whittaker sampling theorem, one can recover any

r�cπ, cπs band limited functions. This means that f must not contain any frequency above πc
2π

in Hz. In other words, by diminishing adequately the sampling step one can recover any band
limited function. Consider another time unit s

c
, and a zoomed version of f defined by f̃p�q :�

f
�

�

c

�

. As we have seen, if we have access to the samples � � � , f
�

�1
c

�

, f
�

0
c

�

, f
�

1
c

�

, f
�

2
c

�

, � � �

or equivalently that we have access to � � � , f̃ p�1q, f̃ p0q, f̃ p1q, f̃ p2q, � � � then f and therefore f̃

are well sampled from the Shannon-Whittaker theory point of view. One the one hand, f is
r�cπ, cπs band limited with an arbitrary positive constant c that is f is band limited. This

means that
ˆ̃
f pξq � 0 as soon as |cξ| ¡ |cπ|. Therefore, from its definition,

ˆ̃
f is r�π, πs band

limited. In other words, f can be seen as a r�π, πs band limited function provided we use an
adequate time scale, i.e., use an adequate unit to measure the time. This time scale is given by
the Shannon-Whittaker sampling theorem and, implicitly, implies that ξ is measured in π

2πc
Hz.

Therefore, if we assume that the sampling system respects the Shannon-Whittaker theorem we
can without loss of generality assume that f is r�π, πs, where the frequencies of f does not
exceed π

2π�“sampling step in s”
Hz.

In conclusion, we assume that the couple optical system/sensor array are designed according
to the Shannon-Whittaker sampling theory. Therefore, the adequate unit for the distances x is
the pixel. With this unit of distance the signal is r�π, πs band limited, where the frequencies
are measured in π

2π“pixel length”
Hz. Therefore, the physical frequency cut off is arbitrary. This

means that the theory we shall develop covers any band limited function. Note that with this
model the image has a structure: the structure of a band limited function. Our hypothesis is
that, the couple optical system/sensor permits to obtain well sampled signal in the sense of the
Shannon-Whittaker sampling theorem. Mathematically, we can, w.l.o.g. assume that the cut
off frequency comes from the PSF g as in definition 2.1 page 8 that is g is r�π, πs band limited.
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C Measurability

We need to prove that the samples are random variables, i.e., measurable functions (see, e.g., [44,
p. 168], see also [20, p. 44]). For any x P R let the random variables ηpxq be defined by ηpxq :
pΩ,Tη,Pηq Ñ pR,BorpRqq where, Ω :� R is the sample space, BorpRq is the Borel sigma algebra
on R, Tη is chosen as the smallest tribe on Ω that makes ηpxqmeasurable i.e, Tη � tηpkq�1B : B P

BorpRqu. The Poisson random variables are defined on Ppλq : pN,T
N

,PPoissonpλqq Ñ pR,BorpRqq,
where T

N

is the smallest sigma algebra (in the sense of the inclusion) that contains N. Assume
that at a pixel sensor centered at x P R we have

³t2
t1
upx � vtqdt � λ. From equation (9) and

for any x P R, obspxq is the sum of a Poisson and of a sensor readout ηpxq random variables
Ppλq � ηpxq : pΩ,T ,Pq Ñ pR,BorpRqq. It is therefore measurable with the sigma algebra
T � tpPpλq � ηpkqq�1B : B P BorpRqu.

D Proof of lemma 3.2 page 13

From its definition 2.1 page 8 the deterministic function ũ � u � µ is r�π, πs band limited.

Therefore, we deduce that the function R Q x ÞÑ
�

1
|v|
α
�

�

v

�

� ũ
	

pxq is r�π, πs band limited. In

addition, since up�q � ũp�q � µ (see definition 2.1 page 8) we deduce that, for any x P R, (15)
holds. We now prove that u is uniformly bounded.

From the remark page 11 we have α P L1
pRq. Recall that from definition 2.1 page 8

we have ũ P L1
pRq. Hence, from Young inequality (see, e.g., [25, p. 525]) we deduce that

�

1
|v|
α
�

�

v

�

� ũ
	

P L1
pRq. Therefore, by Riemann-Lebesgue theorem (see e.g., [23, prop. 2.1]) we

have that R Q ξ ÞÑ F
�

α
�

�

v

�

� ũ
�

pξq is continuous. In addition, from definition 2.1 page 8 we

deduce that ũ is band limited. Therefore, R Q ξ ÞÑ F

�

1
|v|
α
�

�

v

�

� ũ
	

pξq is compactly supported.

Hence, we deduce that F

�

1
|v|
α
�

�

v

�

� ũ
	

P L1
pRq. Thus, by Riemann-Lebesgue theorem we

have that 1
|v|
α
�

�

v

�

� ũ is uniformly bounded. It follows from (15) that 1
|v|
α
�

�

v

�

� u is uniformly
bounded.

E Proof of lemma 3.5 page 17

Consider the 2π periodic function g : RÑ C defined as

gpξq :� γ̂pξq for any ξ P r�π, πq (112)

and the Dirichlet kernel Dnpξq �
1
2π

°n
k��n e

ikξ.
From its definition 3 page 11 we have α P L1

pRq. Therefore, by Riemann-Lebesque (see e.g., [23,
prop. 2.1]) we have that α̂ is continuous. In addition, we assumed that α̂pξvq � 0 for any
ξ P r�π, πs. From their definitions (39) page 17 and (112), we have gpξq � γpξq � 1

α̂pξvq

for any ξ P r�π, πq. Therefore, we obtain that g is continuous on pr�π, πsq and that g P

L1
pr�π, πsq. Since g P L1

pr�π, πsq it has a Fourier series decomposition. From the Fourier
series decomposition we have

g �

per
Dnpξq :�

1

2π

» π

�π

gpyqDnpξ � yqdy �

ņ

k��n

ckpgqe
ikξ (113)

where, for any k P Z,

ckpgq �
1

2π

» π

�π

gpξqe�ikξdx. (114)
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We shall now pass to the limit n Ñ �8 in (113). The Fourier series theory entails that

g �

per
Dnpξq :� 1

2π

³π

�π
gpyqDnpξ � yqdy

nÑ�8

ÝÝÝÝÑ gpξq for any ξ P R where g is continuous at ξ.

Therefore, we obtain that

gpξq �

�8

¸

k��8

ckpgqe
ikξ , (115)

for any ξ P R where g is continuous at ξ. We have that g is continuous at ξ � 0. Therefore,
from (115) we obtain that

gp0q �
�8

¸

k��8

ckpgq. (116)

Hence, combining (112), (114) and (116) we deduce that

gp0q � γ̂p0q �
�8

¸

k��8

1

2π

» π

�π

γ̂pξqe�ikξdξ.

Since, from its definition (39) page 17, γ is r�π, πs band limited we obtain that

γ̂p0q �
�8

¸

k��8

1

2π

»

R

γ̂pξqe�ikξdξ. (117)

In addition, from (40) we have γ P L2
pRq. From (xv), for any k P Z, we have

1

2π

»

R

γ̂pξqe�ikξdξ � γp�kq. (118)

Hence, combining (117) and (118) we deduce that

γ̂p0q �

»

R

γpyqdy �

�8

¸

k��8

γp�kq. (119)

This applies for any shift x P R of γ. Hence, from (119) we deduce that

γ̂p0q �

»

R

γpyqdy �

»

R

γpx� yqdy �

�8

¸

k��8

γpx� kq, (120)

for any x P R. Thus, combining (41) and (120) we deduce that

�8

¸

k��8

γpx� kq �
1

³

R

αpxqdx
,

for any x P R. This concludes the proof.

F Proof of lemma 3.6 page 18

The proof is based on the Poisson summation formula (see annex G page 39). We give the
calculations details.

The proof is in two three steps. The step a) proves that, for any x P R,

8

¸

n��8

�

1

|v|
α
�

�

v

	

� ũ




pnqγpx� nq �

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq. (121)
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The step b) proves that, for any x P R,

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq � ũpxq. (122)

The step c) combines the steps a) and b) with lemma 3.5 page 17 and (15) page 13 to deduce (43).

Step a): For any x P R, we have

8

¸

n��8

�

1

|v|
α
�

�

v

	

� ũ




pnqγpx� nq �

»

�8

�8

�

1

|v|
α
�

�

v

	

� ũ




pyqγpx� yqdy. (123)

To justify (123), consider the intermediate function fx defined by

fxpyq �

�

1

|v|
α
�

�

v

	

� ũ




pyqγpx� yq for any y P R. (124)

With the help of the function fx defined in (124), the left hand side of (123) rewrites as

8

¸

n��8

�

1

|v|
α
�

�

v

	

� ũ




pnqγpx� nq �

8

¸

n��8

fxpnq. (125)

Using the Poisson summation formula (see annex G page 39) we will prove that

8

¸

n��8

fxpnq
?
� f̂xp0q. (126)

Provided (126) holds, the equality in (123) follows from the definition of the Fourier transform

f̂xp0q �
³

R

fxpyqdy. Indeed, from the definition (124) of fx we have
³

R

fxpyqdy �
�

1
|v|
α
�

�

v

�

� ũ
	

pyqγpx�

yqdy which coincides with the right hand side of (123). Therefore, provided we prove that (126)
holds the equality in (123) holds. We now turn to the validity of (126).

Using the Poisson summation formula (see annex G page 39), we now justify (126). In order
to apply the Poisson formula we first need to prove that fx P L1

pRq and band limited. From
Cauchy-Schwartz inequality (see, e.g., [25, p. 140]) we have

}fx}L1
pRq

¤

�

�

�

�

1

|v|
α
�

�

v

	

� ũ

�

�

�

�

L2
pRq

}γ}L2
pRq

. (127)

In addition, from Young inequality (see, e.g., [25, p. 525]), we have

�

�

�

�

1

|v|
α
�

�

v

	

� ũ

�

�

�

�

L2
pRq

¤

�

�

�

�

1

|v|
α
�

�

v

	

�

�

�

�

L2
pRq

}ũ}L1
pRq

. (128)

Therefore, combining (127) and (128) we have

}fx}L1
pRq

¤ }α}L2
pRq

}ũ}L1
pRq

}γ}L2
pRq

. (129)

Furthermore, from definition 2.1 page 8 we have ũ P L1
pRq, from remark page 11 we have

α P L2
pRq and from (40) page 17 we have γ P L2

pRq. Therefore, from (129) we deduce that
fx P L1

pRq. From its definition 2.1 page 8 ũ is band limited. Therefore, from its definition (124),
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we deduce that fx is band limited. This means that we can apply the Poisson formula to fx.
The Poisson summation formula (see annex G page 39) applied to fx entails

�8

¸

n��8

fxpnq �
¸

m

f̂xp2mπq. (130)

Recall that we need to prove that (126) holds. Therefore, we need to prove that the term m � 0
is the only non zero term in the right hand side of (130). From the definition (124) of fx we
have

f̂xpξq � ppα̂p�vqˆ̃up�qq � γ̂p�qe�ixξ
qpξq, (131)

for any ξ P R. From definition 2.1 page 8 we have that u is r�π, πs band-limited. This implies
that the function R Q ξ ÞÑ α̂pξvqˆ̃upξq is r�π, πs band limited. From its definition (39) page 17 γ

is also r�π, πs band-limited. Therefore, from (131), we deduce that f̂xpξq � 0 for all ξ P R such
that |ξ| ¡ 2π. Thus, from (130) we deduce that

�8

¸

n��8

fxpnq � f̂xp0q � f̂xp�2πq � f̂xp2πq. (132)

Yet, to prove that (126) holds we need to show that f̂xp�2πq � f̂xp2πq � 0. We now show in
details that f̂xp2πq � 0. From (131), f̂xpξq is given by a convolution (see (x) for the definition).
Thus, the evaluation of (131) at ξ � 2π yields

f̂xp2πq �

»

R

α̂pξvqˆ̃upξqγ̂p2π � ξqe�ixξdξ. (133)

Recall that, from definition 2.1 page 8, ũ is r�π, πs band-limited. Thus, from (133) we deduce
that

fxp2πq �

» π

�π

α̂pξvqˆ̃upξqγ̂p2π � ξqe�ixξdξ. (134)

The integrand in (134) is non zero only on the zero Lebesque measure set tπu. Hence, we deduce
that f̂xp2πq � 0. Similarly we obtain f̂xp�2πq � 0. Thus, we proved that (126) holds, i.e., we
can remove the question mark in (126). Consequently, we have that (123) holds. Furthermore,
from the definition (x) of the convolution we have

»

�8

�8

�

1

|v|
α
�

�

v

	

� ũ




pyqγpx� yqdy �

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq, (135)

for any x P R. Hence, combining (123) and (135), for any x P R, we obtain (121) page 36. This
concludes the step a). We now turn to step b).

Step b): From the definitions (xv) of the Fourier transform and the inverse Fourier
transform, for any x P R, we have

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq � F
�1

�

F

�

1

|v|
α
�

�

v

	

� ũ




pξqFpγqpξq




pxq. (136)

Since F

�

1
|v|
α
�

�

v

�

	

� α̂pξvq, from (136) we have

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq � F
�1
�

α̂pξvqˆ̃upξqγ̂pξq
	

pxq, (137)
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for any x P R. From the definition of the inverse Fourier transform (xv) and (137) we deduce
that, for any x P R,

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq �

1

2π

»

�8

�8

α̂pξvqˆ̃upξqγ̂pξqeixξdξ. (138)

From definition 2.1 page 8 we have that ũ is r�π, πs band limited. Consequently, from (138)
we deduce that, for any x P R,

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq �

1

2π

»

�π

�π

α̂pξvqˆ̃upξqγ̂pξqeixξdξ. (139)

From the definition of γ (39) page 17 we have that γ̂pξq � 1
α̂pξvq

for any ξ P r�π, πs. Hence, we
deduce that, for any x P R,

��

1

|v|
α
�

�

v

	

� ũ




� γ




pxq �

1

2π

» π

�π

ˆ̃upξqeixξdξ. (140)

From definition 2.1 page 8 we have that ũ is r�π, πs band limited. This implies that, for any
x P R,

1

2π

»

R

ˆ̃upξqeixξdξ � ũpxq, (141)

where the last equality is justified by the definition of the inverse Fourier transform (xv). Thus,
combining (140) and (141) we obtain (122) page 37. This completes the step b). We now turn
to the step c) that completes the proof.

Step c): Combining (121) and (122) page 37, for any x P R, we have

8

¸

n��8

�

1

|v|
α
�

�

v

	

� ũ




pnqγpx� nq � ũpxq. (142)

From lemma 3.5 page 17 we deduce that, for any x P R,

µ

�

»

R

αptqdt

�

�8

¸

n��8

γpx� nq � µ. (143)

Therefore, combining (15) page 13, (142) and (143) we deduce that, for any x P R,

8

¸

n��8

�

1

|v|
α
�

�

v

	

� u




pnqγpx� nq � ũpxq � µ. (144)

From the definition of u 2.1 page 8 we have up�q � ũp�q � µ. Thus, from (144) we obtain that,
for any x P R, (43) page 18 holds. This concludes the proof.

G Poisson summation formula for L1
pRq band limited functions

This section proves that the Poisson summation formula that we use in this paper is valid.
The Poisson summation formula is, formally,

�8

¸

n��8

f pnq �

�8

¸

m��8

f̂ p2πmq. (145)
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However, (145) is not always valid when f P L1
pRq. Indeed, even when both sides of (145)

converge absolutely the equality may fail (see, e.g., [13] and [21, Ex 1.17, p. 163] for an example
of f P L1

pRq such that f̂ P L1
pRq for which (145) fails).

A classic condition that ensures that (145) holds involves decay estimates of both f and f̂

at the infinity (see, e.g., [25, thm. 1, p. 628]) and does not apply if f is just in L1
pRq and

band limited. Other results involve bounded variation assumption (see, e.g., [13]) on f is not
applicable here. Therefore, we shall now provide a proof that (145) holds in our case that is for
an f P L1

pRq and band limited. Our proof is based on [8].
Let f P L1

pRq be such that f̂ pξq � 0 for any ξ such that |ξ| ¡ C for some constant C.
From Riemann-Lebesgue theorem (see e.g., [23, prop. 2.1]) we have f̂ is continuous. From
the band limited assumption we deduce that f̂ P L1

pRq. Since f is band limited the series
°

�8

m��8

f̂ p2πm� xq is finite and therefore converges uniformly in x P R. By Plancherel-Pólya
inequality (see [49, equations (25) and (26), p. 233], since f P L1

pRq and band limited it satisfies
the growth condition) we obtain that

°

�8

k��8 |f pkq| ¤ A}f}L1
pRq

for some positive constant A.

Therefore, the series
°

�8

k��8 f pkq converges. Thus, we can apply [8, theorem 2, p.147] (with

g :� f̂ and W �

1
2π
) to deduce that (145) is valid for any f P L1

pRq band limited.

H Main notations and formulae

(i) t ¥ 0 time variable

(ii) ∆t length of a time interval (exposure time)

(iii) x P R spatial variable

(iv) z̄, for z P C denotes the conjugate of a complex number

(v) X � Y means that the random variables X and Y have the same law

(vi) PpAq probability of an event A

(vii) EpXq expected value of a random variable X

(viii) varpXq variance of a random variable X

(ix) Ppλq Poisson random variable with intensity λ ¡ 0. Thus, if X � Ppλq we have PpX �

kq �
expp�λqλk

k!

(x) f � g convolution of two functions pf � gqpxq �
³

R

f pyqgpx� yqdy

(xi) obspnq, n P Z observation of the scene at pixel n

(xii) v relative velocity between the scene and the camera (unit: pixel(s) per second)

(xiii) αp�q �
°

�8

k��8 αk1
rk∆t,pk�1q∆trp�q exposure function (pαkqk P ℓ1pZq)

(xiv) }f}L1
pRq

�

³

R

|f pxq|dx, }f}L2
pRq

�

b

³

R

|f pxq|2dx

(xv) Let f, g P L1
pRq or L2

pRq, then Fpf qpξq :� f̂pξq :�
³

R

f pxqe�ixξdx and

F�1
pFpf qqpxq :� ~Fpf qpxq � f pxq � 1

2π

³

R

Fpf qpξqeixξdξ.Moreover Fpf�gqpξq � Fpf qpξqFpgqpξq

and (Plancherel)
»

R

|f pxq|2dx � }f}2L2
pRq

�

1

2π

»

R

|Fpf q|2 pξqdξ �
1

2π
}Fpf q}2L2

pRq

(146)
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(xvi) u ideal (noiseless) observable scene.

(xvii) sincpxq � sinpπxq
πx

�

1
2π
Fp1

r�π,πsqpxq � F�1
p1

r�π,πsqpxq

(xviii) 1

ra,bs indicator function of an interval ra, bs

(xix) Let f P L1
pr�R,Rsq or f P L2

pr�R,Rsq. The n-th Fourier series coefficient of f is

cnpf q :�
1
2R

³R

�R
f ptqe�int π

T dt and we have f ptq �
°

�8

n��8 cnpf qe
�int π

T . Moreover we have
(Parseval)

�8

¸

n��8

|cnpf q|
2
�

1

2R

» R

�R

|f ptq|2 dt. (147)
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